MathB.in
New
Demo
Tutorial
About
Solve $$ \sin x + \sqrt{ \sin x + \sin 2x - \cos x } = \cos x $$ Move the $\sin x$ to the other side, and square. Squaring will introduce some extra solutions, but worry about that later. $$ \sin x + \sin {2x} - \cos x = {(\cos x - \sin x)}^2 $$ Not let $x = y + \pi/4$. This gives $\sin x = {\frac 1 {\sqrt{2}}} ( \sin y + \cos y )$ and $\cos x = {\frac 1 {\sqrt{2}}} ( \cos y - \sin y )$ and $\sin 2x = \cos 2y$. Substituting gives $$ \sqrt 2 \sin y + \cos 2y = 2 \sin^2 y $$ Using double angle formula $\cos 2y = 1 - 2 \sin^2 y$ $$ 4 \sin^2 y - \sqrt 2 \sin y - 1 = 0 $$ Use quadratic formula to give $$ \sin y = \frac {\sqrt 2 \pm \sqrt{2 + 4 \times 4}}{8} $$ which simplifies to $$ \sin y = \frac {\sqrt 2 ( 1 \pm 3 ) } {8} $$ and finally $$ \sin y = \frac {\sqrt 2} 2 \; \text{or} \; - \frac {\sqrt 2}{4}$$ $$ \cos y = \pm \frac {\sqrt 2} 2 \; \text{or} \; \pm \sqrt{\frac {7}{8}}$$ The case $\sin y = 1/sqrt 2$ and $\cos y = - 1/\sqrt 2$ gives $\sin x = 0$ and $\cos x = -1$ which is an extra solution introduced in the squaring. I think the other solution based on $\sin y = -\frac 1 {2 \sqrt 2}$ and $\cos y = \pm \frac {\sqrt 7} {2 \sqrt 2}$ is real.
ERROR: JavaScript must be enabled to render input!
Sun, 16 Feb 2025 12:11 GMT