MathB.in
New
Demo
Tutorial
About
Binomial Theorem ---------------- $$ (x+y)^n = \sum_{k=0}^n {n \choose k} x^{n - k} y^k. $$ Exponential Function -------------------- $$ e^x = \lim_{n \to \infty} \left( 1+ \frac{x}{n} \right)^n. $$ Cauchy-Schwarz Inequality ------------------------- $$ \left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right). $$ Bayes' Theorem -------------- $$ P(A \mid B) = \frac{P(B \mid A) \, P(A)}{P(B)}. $$ Euler's Summation Formula ------------------------- **Theorem** (Euler's summation formula). _If $ f $ has a continuous derivative $ f' $ on the interval $ [y, x], $ where $ 0 < y < x, $ then_ \begin{align} \sum_{y < n \le x} f(n) = & \int_y^x f(t) \, dt + \int_y^x (t - [t]) f'(t) \, dt \notag \\ & + f(x)([x] - x) - f(y)([y] - y). \label{theorem} \end{align} _Proof._ Let $ m = [y] $ and $ k = [x]. $ For integers $ n $ and $ n - 1 $ in $ [y, x] $ we have \begin{align*} \int_{n - 1}^n [t] f'(t) \, dt & = \int_{n - 1}^n (n - 1) f'(t) \, dt \\ & = (n - 1) \{ f(n) - f(n - 1) \} \\ & = \{n f(n) - (n - 1) f(n - 1)\} - f(n). \end{align*} Summing from $ n = m + 2 $ to $ n = k $ we find that the first sum telescopes, hence \begin{align*} \int_{m + 1}^k [t] f'(t) \, dt & = k f(k) - (m + 1) f(m + 1) - \sum_{n = m + 2}^k f(n) \\ & = k f(k) - m f(m + 1) - \sum_{y < n \le x} f(n). \end{align*} Therefore \begin{align} \sum_{y < n \le x} f(n) & = - \int_{m + 1}^k [t] f'(t) \, dt + k f(k) - m f(m + 1) \notag \\ & = - \int_y^x [t] f'(t) \, dt + k f(x) - m f(y). \label{summation} \end{align} Integration by parts gives us $$ \int_y^x f(t) \, dt = x f(x) - y f(y) - \int_y^x t f'(t) \, dt, $$ and when this is combined with \eqref{summation} we obtain \eqref{theorem}. Hello World Program ------------------- Here is an example of `"hello, world"` program written in the C programming language: ``` #include
int main() { printf("hello, world\n"); return 0; } ``` Issac Newton Quotes ------------------- Issac Newton was relatively modest about his achievements, writing in a letter to Robert Hooke in February 1676: > If I have seen further it is by standing on the shoulders of giants. In a later memoir, Newton wrote: > I do not know what I may appear to the world, > but to myself I seem to have been only like a > boy playing on the sea-shore, and diverting > myself in now and then finding a smoother pebble > or a prettier shell than ordinary, whilst the > great ocean of truth lay all undiscovered before > me. Table of Number Theory Functions -------------------------------- The following table shows information about a few important functions in number theory. | Name | Notation | First few values | Multiplicative property | |-|-|-|-| | Möbius function | $ \mu(n) $ | $ 1, -1, -1, 0, -1 $ | Multiplicative | | Euler's totient function | $ \varphi(n) $ | $ 1, 1, 2, 2, 4 $ | Multiplicative | | Mangoldt function | $ \Lambda(n) $ | $ 0, \log 2, \log 3, \log 2, \log 5 $ | Not multiplicative | | Liouville's function | $ \lambda(n) $ | $ 1, -1, -1, 1, -1 $ | Completely multiplicative | About This Demo --------------- This is a demo of a MathB.in post written in Markdown + LaTeX.
ERROR: JavaScript must be enabled to render input!
Sun, 25 Mar 2012 00:00 GMT