MathB.in
New
Demo
Tutorial
About
Assume the number in sin, cos are in degrees. Prove $\frac{\sqrt{2 + \sqrt2}} {2} (-1 + \sqrt 2) = \frac{\sqrt{2 - \sqrt2}} {2}$ Part 1 1. $\sin(45^\circ) = \cos(45^\circ)$ because $\sin(x) = \cos(90^\circ - x)$ Part 2 1. $\sin(2a) = 2\sin(a)\cos(a)$ double angle 2. $\sin(45) = 2\sin(22.5)\cos(22.5)$ Part 3 1. $\cos(2a) = \cos^2(a) - \sin^2(a)$ double angle 2. $\cos(45) = \cos^2(22.5) - \sin^2(22.5)$ Part 4 1. $2\sin(22.5)\cos(22.5) = \cos^2(22.5) - \sin^2(22.5)$ stitch part 2, 3 using part 1 2. $0 = \cos^2(22.5) - 2\sin(22.5)\cos(22.5) - \sin^2(22.5)$ 3. let $j = \cos(22.5), k = \sin(22.5)$ 4. $0 = j^{2} - 2jk - k^{2}$ Part 5 1. using quadratic formula, you can get j in terms of k and k in terms of j 2. $j = k (1 \pm \sqrt 2)$ 3. $k = j (-1 \pm \sqrt 2)$ 4. lets just focus on k in terms of j for now 5. $\sin(22.5) = \cos(22.5) (-1 \pm \sqrt 2)$ 6. $\sin(22.5) = \cos(22.5) (-1 + \sqrt 2)$ because this is positive the other one is negative. It doesn't make sense $\sin(22.5)$ to have negative value Part 6 1. $\cos(22.5) = \frac{\sqrt{2 + \sqrt2}} {2}$ By Wikipedia 2. $\sin(22.5) = \frac{\sqrt{2 + \sqrt2}} {2} (-1 + \sqrt 2)$ Substitution using Part 5 Step 6 and Part 6 Step 1 3. $\sin(22.5) = \frac{\sqrt{2 - \sqrt2}} {2}$ By Wikipedia 4. $\sin(22.5) = \frac{\sqrt{2 + \sqrt2}} {2} (-1 + \sqrt 2) = \frac{\sqrt{2 - \sqrt2}} {2}$ Question is I know they are equal. $\frac{\sqrt{2 + \sqrt2}} {2} (-1 + \sqrt 2) = \frac{\sqrt{2 - \sqrt2}} {2}$ But how come I can't directly derive from $\frac{\sqrt{2 + \sqrt2}} {2} (-1 + \sqrt 2)$ to $\frac{\sqrt{2 - \sqrt2}} {2}$ using algebra? They are the same number just in a different form, yet you can't use algebra to equate those two. You have to take a detour to figure out they are equal.
ERROR: JavaScript must be enabled to render input!
Thu, 06 Feb 2025 02:23 GMT