MathB.in
New
Demo
Tutorial
About
A function $f:\mathbb{R}^n \rightarrow \mathbb{R}$ is said to be harmonic if $\nabla f = \sum_{i=1}^{n} \frac{\partial^2 f}{\partial x_i^2} = 0$ If $f, g : \mathbb{R}^n \rightarrow \mathbb{R}$ are harmonic functions, prove that the vector field $F = f(\nabla g) - g(\nabla f)$ has a null divergence.
ERROR: JavaScript must be enabled to render input!
Mon, 11 Nov 2024 23:52 GMT