MathB.in
New
Demo
Tutorial
About
Find the general solution of the nonhomogeneous ODE \begin{equation} y^{\prime\prime}-y^\prime-6y=\sin{t}. \end{equation} where the complimentary solution is \begin{equation} y_c(t)=C_1e^{-2t}+C_2e^{3t}. \end{equation} Since the nonhomogeneous term is not a solution to the homogeneous equation, the particular solution takes the form \begin{equation} y_p(t)=A\cos{t}+B\sin{t}. \end{equation} This is substituted into the ODE and the coefficients are solved for: \begin{equation} \begin{split} (-A\cos{t}-B\sin{t})-(-A\sin{t}+B\cos{t})-6(A\cos{t}+B\sin{t})=\sin{t} \end{split} \end{equation} This is rearranged to give \begin{equation} (-A-B-6A)\cos{t}+(-B+A-6B)\sin{t}=\sin{t}. \end{equation} For this to hold for all $t$ one must have \begin{align} -7A-B=0&\\ A-7B=1& \end{align} The solution to this system of equations is $A=\frac{1}{50}$ and $B=-\frac{7}{50}$. Thus the general solution is \begin{equation} y(t)=y_c(t)+y_p(t)=C_1e^{-2t}+C_2e^{3t}+\frac{1}{50}\cos{t}-\frac{7}{50}\sin{t}. \end{equation}
ERROR: JavaScript must be enabled to render input!
Sun, 10 Nov 2024 22:20 GMT