MathB.in
New
Demo
Tutorial
About
Prove that $$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n} - 1$$ for every positive integer $n$. -- We use induction. Let the above statement the called $P(n)$. We wish to prove two things: 1. $P(1)$ is true; 2. $\forall k \in \mathbb{N}, P(k) \implies P(k+1)$ is true. $P(1)$: $$\frac{1}{\sqrt{1}} \le 2\sqrt{1} - 1 = 1$$ is true. Lemma: $$\forall k \in \mathbb{N}, 2\sqrt{k + 1} - 2\sqrt{k} \ge \frac{1}{\sqrt{k + 1}}.$$ Proof: It follows trivially that \begin{align*} & 2(k + 1) \ge 2k + 1 = (k) + (k + 1) \ge 2\sqrt{k(k+1)} \qquad\text{by AM-GM} \\ &\implies \qquad 2k + 2 \ge 2\sqrt{k(k+1)} + 1 \\ &\implies \qquad 2(k + 1) -2\sqrt{k}\sqrt{k+1} \ge 1 \\ &\implies \qquad 2\sqrt{k + 1} -2\sqrt{k} \ge \frac{1}{\sqrt{k + 1}} \end{align*} We assume $P(k)$ for an arbitrary positive integer $k$, so we have $$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} \le 2\sqrt{k} - 1.$$ Thus, we have $$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + 2\sqrt{k + 1} \le 2\sqrt{k + 1} - 2\sqrt{k} + 2\sqrt{k} - 1,$$ so $$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k + 1}} \le 2\sqrt{k + 1} - 1.$$ Thus, $P(k) \implies P(k + 1)$.
ERROR: JavaScript must be enabled to render input!
Mon, 04 Jan 2021 11:01 GMT