MathB.in
New
Demo
Tutorial
About
Consider $$\begin{cases} u_x+u_y&=2\\ u(x,0)&=x^2 \end{cases} \tag{1}$$ We have the initial curve $$\Gamma(s)=(s,0,s^2) \tag{2}$$ We parametrize the initial condition as $$ \begin{cases} x_0(s)&=s\\ y_0(s)&=0\\ \hat{u}_0(s)&=s^2 \end{cases} \tag{3} $$ and we obtain the following system: $$ \begin{cases} \frac{d}{dt}x(t,s) = a(x(t,s), y(t,s))=1\\ \frac{d}{dt}y(t,s) = b(x(t,s), y(t,s))=1\\ \frac{d}{dt}\hat{u}(t,s) = c_0(x(t,s), y(t,s), \hat{u}(t,s) + c_1(x(t,s), y(t,s)) =2 \end{cases} \tag{4} $$ using the initial conditions (3). Therefore the characteristic curves are given by: $$ \begin{cases} x(t,s) &= t+s\\ y(t,s) &= t\\ \hat{u}(t,s) &= s^2+2t \end{cases} \tag{5} $$ The parametrized solution surface is then given by the relation $$u(x(t,s), y(t,s))=\hat{u}(t,s)=s^2+2t \tag{6}$$ Since we are looking for a solution in $(x,y)$ coordinates, we have to find the inverse map $(t,s)\mapsto (x,y)$ to find $u(x,y)$\\ In this case it is very easy: $$ \begin{cases} x(t,s)&=s+t\\ y(t,s)&=t \end{cases} \tag{7} $$ so $$ \begin{cases} y=t\\ s=x-t=x-y \end{cases} \tag{8} $$ Hence the solution to the PDE is given by: $$u(x,y)=s^2+2t=(x-y)^2+2y\tag{9}$$ $$
ERROR: JavaScript must be enabled to render input!
Sat, 05 Oct 2019 11:02 GMT