MathB.in
New
Demo
Tutorial
About
The action-functional $\Phi(q)$ is bounded above subject to the particle number constraint $\sum\limits_{n\in\mathbb{Z}}(q_n)^2 = \mathcal{N}$, and $\omega,\alpha \in\mathbb{R} > 0$ \begin{align} \Phi(q) &= \sum\limits_{n \in \mathbb{Z}}\sum\limits_{\substack{m\in\mathbb{Z} \\ m\neq n}}\frac{|q_n - q_m|^2}{|n-m|^{1+\alpha}}- \left ( \frac{\omega}{2}\sum\limits_{n\in\mathbb{Z}}q_n^2 + \sum\limits_{n\in\mathbb{Z}}(q_n)^4\right)\\ &\leq \label{eq:4.7} \mathcal{N} \left (8\zeta(1+\alpha)- \frac{\omega}{2} \right ) + \frac{1}{4}\mathcal{N}^2 \end{align} Note: $\Phi(0)=0$. So if we can show the function is positive then negative (resp. negative then positive) then we have shown existence of a minimum/maximum. $$\Phi(q)\leq\mathcal{N}\left (8\zeta(1+\alpha) - \frac{\omega}{2} + \frac{\mathcal{N}}{4}\right )$$ Since $\mathcal{N}\geq 0$, then the above is negative only when $$8\zeta(1+\alpha) - \frac{\omega}{2} + \frac{\mathcal{N}}{4} < 0$$ Then, \begin{align} 16\zeta(1+\alpha) - 2\omega < \mathcal{N} \end{align} Therefore, $$\Phi(q) < 0 \iff 16\zeta(1+\alpha) - 2\omega < \mathcal{N}$$
ERROR: JavaScript must be enabled to render input!
Tue, 16 May 2023 16:06 GMT