Given

Both $y$ and $n$ are series. For all n... (sorry I used the same letter twice in different contexts...)

$$yn = 1 - nn$$

$$0 < y_n < 1$$

$$(n0 * n1 * ... * n{n+1}) * (y0/n0 + y1/n1 + ... + y{n+1}/n{n+1}) > (n0 * n1 * ... * nn) * (y0/n0 + y1/n1 + ... + yn/nn)$$

Prove

That $(n0 * n1 * ... * n{n+1}) * (y0/n0 + y1/n1 + ... + y{n+1}/n{n+1}) > (n0 * n1 * ... * nn) * (y0/n0 + y1/n1 + ... + yn/nn)$ is true when $(n0 * n1 * ... * n_n) > 1$.

Wednesday, 6 March 2019 04:18 GMT